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INTRODUCTION

Experiment and theory agree [Blum, 1963a] that
the solar corona is continually expanding throughout
the solar system in the form of a tenuous, fully-
ionized plasma, the solar corpuscular radiation (SCR).
This plasma interacts with the geomagnetic field (GMF)
to confine it within a finite cavity, the magnetosphere.
Tnis cavity is approximately 1OR, (earth radius,
Ro = 6400 km) in its smallest dimension, and is separated
from the SCR by an interface, the magnetopause, which
is less than 200 km in thickness. It also appears
likely -- although this has not been directly observed
as yet -- that the flow of SCR around the magnetosphere
is modified by the presence of a stationary collisionless
shock on the sunward (upstream) side.

In zttempting to find an approximate solution to
the magnetosphere geometry we shall employ the idealized
model of Beard [19607], which assumes a magnetic " pole
of moment M (Fig. 1) immersed in a field-free plasma.
perpendicular to the sfream direction. With the exception
of th.  <dipole singularity at tne origin of coordinaces,
che n. _etic field potentials must satisfy Laplace's
-quatics within the (assumed) plasma-free magnetosphere.
.a toe ourface of the magnetospnere (the magn:topause

is n._ .cced) two boundary conditions are to be sacisiied:
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(1) the magnetic field is completely confined within the
cavity and has no component normal to the surface; (2)
the magnetic pressure incide the surface equals the
kinetic pressure cdue to the iwmpact of SCR incident upon
the surface.

In this paper we shall develop a method which may
be used to obtain approximate solutions to this problem.
The method cohsists in finding two families of surfaces,
eacn family satisfying one of the two boundary conditions
identically on the noon meridian contour (NMC) of the
magnetosphere (Fig. 1, line ANB). The intersection of
the two “emilies is the desired solution. The first,
or F-family, involves the vector potential; the second,
or G-“amily, involves the scalar potential of the field
in the magnetosphere. The potentials are expanded in
a series of solutions of Laplace's equation appropriate
to the geometry and the source field. The series
coefficients are determined by requiring that the F-
and G-surface intersect at a number of arbitrarily
selected points on contour ANB (Fig; 1.

The basic assumption of the method is that if the
¥- and G-surfaces approximately coincide over a region
whose dimensions are at least of the order of the magneto-
dimensions ther, they approximately coincide
with -ae actual free bcw. .ary in that region. TFurtier-

.

sore, in determining the .tentials we have also found



an approximate solution for the fields. We then calculate
the shape of the entire magnetosphere numerically and
verify the accuracy with which the approximation satisfies
the boundary conditions.

This method has been compared, in two dimensions,
with the exact solutions of Hurley [196la,b] and has
been shown to give good approximations (within a few
per cent) of Hurley‘s results, without thexnecessity of

any further assumptions L{3lum, 1953b1.

BOUNDARY CONDITICONS

The conilnexent condition may be expressed as a

Neumann ccndition on the magnetic scaiar »otential:
3/dn =0 ,. (1)

where n is in the direction normal to the surface of
the magnetosphere. The magnetic field, H, may be derived

from either a scalar or a vector potential:
H= - grad Q = curl A". (2)

Dungey (1958, Chép. 81 has shown that in an ideal,
steacv-state case of SCR impinging upon a one-dimensional,
dipc_z-like field we expect the plasma particles to be |
specularly reflected from the magnetopause. Thus the

Dressul . condition on the boundary is

) N
HZ/SW = 2:037* coszx )



where n, is the density of the SCR, V is its velocity,
m the mass of a hydrogen atom, and X the angle the
incident plasma stream makes with the normal to the

surface {Fig. 1). However, considering the great magneto-

hydrodynamic activity found in the region of the magneto-

pause it might be more correct to assume diffuse reflection,

or even no reflection at all. Therefore, we shall take

v

our second boundary condition to be

H2 = Bz coszx , 82 = knomV2 . (&)

where k is a constant, L = k < 2. The choice of k will
have only a small effect on the dimensions of the magneto-
sphere, since H ~ 1/L3. In hypersonic flow theory this
conditiocn {Zg. (4)) is commonly known as Newton's
conditicn (k = 1) and has been shown émpirically to
hold very closely for gaseous flow around the blunt
body behind a detached shock wave [Hayes and Probstein,
1959, Chap. III], so that this condition should remain
approximately valid even if there does exist a detached
shock wave upstream of. the magnetosphere.

Tnis idealized three-dimensional free-boundary
sroblca has thus far not been solved; our goal is to
_~evelcs an approximation which may ultimately be

tc o high degree of accuracy.



THE MITHCD -- NOON MIRIDIAN CONTOUR

To describe this problem we shall employ spherical
coordinates (r,0,%) as shown in Fig. l. Note that the
magnetic dipole is taken parallel to the x-axis, which
it is customary to show pointing north; in our case,
therefore, x polnts south. The SCR is moving in the
negative z-dircction. We eupect the correct solution
LO inciuuwe o ;;gv;u; Sy Uy WLOIG BaOCULG 2@ 1GCacéu
on the NMC on the dayside of the magnetosphere. For
convenience, the term "noon meridian contour" will be

understood to include the midnight meridian as well.

The scalar potential, Q, must satisfy Laplace's

equation: (5)
2
26 = D (.2 30N 3 . 20 2,370
Ve = 3 (r 55 )t ¢sc & 55 k51n 8 ae:>+ csc eaéz o,

and a corresponding vector potential, A, can be derived

from the scalar W(r,6,¢%):
A=Y x (zd) ; VAW =o0. (6)

If we denote the undisturbed components of the
potentials by the subscript (0) and the components
induced by the GMF-SCR interaction by primes ('), the

geomagnetic dipole potentials are

2 .
Q = (M/r7) sin 8 cos &;
s 1V _,.2 fa o~ 5 4 3 e @ ]
&, = - (M/x“){& sin ¢ + 2 cos B cos &), )
.nd D R Y
oy —_— \__-_-~O/5 5 IR N



where § and 2 are unit veeiors in the 0 and ¢ directions,
and r is the radius vector.

The induced scalar potential, Q', must also satisfy
Laplace's equation, and because it cannot be singular

within the magnetosphere we select the form

M m<n
Q' —- S B - _\‘n _Dm ( r\) é d1. (9\
=) /) 24, P, (cos ) cos m¢, m ocd; J
n=1lm=1

PE (cos 0) 1is the associated Legendre polynomial. The
cos m?¢ dependence is determined by the fact that the
problem is symmetric about tne xz-plane. We also argue
that in loe equatorial planc symmetyy requires H = H 2.
The other components of E will vanish identically 1: @
is an ocdd integer; in that case cos (mm/2) = 0.

The induced magnetic field may also be derived

from the vector potentiai

AY =V x (x W'); v? Wi =0
- M m2n
' n .m
W' = E. }‘ Anm R Pn.(cos 6) cos m¥, m odd
n=1m=1
B, = -(n+l) AL (10)

Next we consider fields and potentials on the NMC,
where the magnetic field must, by symmetry, lie in the

~oon meridian plane. By -cilnition it is clear tnat
2

-

o8 X = (dx/ds)z (see Ti_. Z;, arnd Zq. (&) becomes

-
-



-dQ = Hds = + 3dx, (12)

where dQ represents the change in Q along the NMC. Thus,

1f we construct a contour in space,

&

éc' = -0 {z,5C,+ 5r sin 6 + K = 0, OSGSBN;
G(r,8) =+ ‘ (13)
kG"' = L {r,3$,0) + 3r sin 6 - K = 0, GNSGST\';

where K= cre arbitrary constants, 0y is the neutral point,
and K~ = 0 (since Pg (1) = 0 for m21), we can see that
the comsnonent of H = -VYQ tangential to this contour has

the prcoerty

Hg = 8% cos®y. (14)

If we could, in some manner, insure that the normal
comporient of H on the G-contour would vanish, then

E =, and G would represent the NMC. Although G is

a uniquely defined functicn of Q we cannot be sure that
it is the only contour on wirich O would satisfy the
boundary conditions. However, for the purpose of this
argu .t we shall assume that it is.

L2 Lent step is to find some prescription which

il Loio the moomal comporncnt of H vanish on G. Tois



is cone by reguiring thoc O colnacide witin some F-surface
which 1s in turn defined to be tangential to H.
In order to find a suitable representation for F

we note that it must satisfy (& = 0)
(15)
H- Y = (x4 - ¥=02+71r3/3r)¥W] * VF =0,

and since W = Wy + W' satisiies Laplace's equation,

we may substitute

(16)

r(241r3/37){(d3WRr) = - csc 6(¥36)(sin 6 BW/BG)—CSCZG BZW/BQZ

into Eq. (15). By symmetry, if F = F(r,8,%), then we

have H; = 0 on the NMC, so that Eq. (l53) reduces to

- P . 2‘]“
r(cF/Br)L 38 (sin 6 2W/38) + csc © BQZJ
= sin O (3F/36) ; %% + T g§§% 3 (17)
for ¢ = 0. 1If we set
F(r,8,%) = r cos 8 aW/36 - C =0 (18)
and substitute into Eq. (17), we fiﬁd
(ain 8 %% + cos 6 Zg - gg + T S%é% =0 (19)

3¢

[
Hh
ot
o

e representation suggested in Eq. (18) is to

1

satisfy Eq. (15), we shall need to impose another condition




on W; viz., that the left-hand factor of Eg. 719) be
identically zero for all (r,8) as long as & = 0. We
shall term this the "congruence conditior.® We note

th

that Vg eiready satisfies this condition. If we sub-
stitute for W' from Eq. (10) the congruence condition

on W reduces to

(cos 8) 9 ~
N m _
2; Anm <31n 6 R - m° cos 8 P (cos 9)) =
m=1 ‘

m odd . (20)

>

for every value of n. Although we have thus reduced
the flexibility of our original representation, Eq. (9),
as a means cof description, we still have undetermined
coefficients A, at our disposal.

1Z we normalize to the neutral point radius, R,

the equations of the F and G contours become (2 = 0)

d PE (cos §)

N N
F(p,8) = {(p cos 8) <cose : Z,anm o™ % )=0
+, ~N Sln.e 'rm_m . . +
G—(p, 0, = —5—— Zb P (cos § +bp sin b -k— = 0, (21)
nm n
NES
e im _ n+2 . _ n+2 _
=R, a = AnmR /™ b = B_R /M = (n+l)aﬁm,



The F-contour was derived by requiring it to be

(t)

tangential to the field line in the noon meridian plane;

the G-contour was cerived by recuiring the magnetic
field component tangential To 1t Co satisfy the pressure

condition. 1If we can evaluate the parameters so as to

make F and G con

OQ
C..
o
Y
1
ct
@)
W
3
(@)
o]
ot

ne resulting contour

p-t

the boundary conditions Zgs. (1), (&) are satisfied.

-~

1t shoulcd be noted that in the process we would also be

specifying the magnetic potentials everywh

(0

re, not only
in the xz-plane. Using these poctentials one can then
construct the full free becundary in three dimensions,
as we shall cecmonstrate.

Wext we cderive the auxiliary conditions which must
hold at the neutral point: the G-curve must be continuous,

so that

€3]

B 1y _ - = 14
in gy + }anm P¥ (cos 6y) - b sin 8 = 0 5 (23)

k7 = 2b sin 6. . (24)

1

We can show thzt the requiremend: of congruence &nd tia
G have conticcous first percial derivatives everywhere
is equiv.lent to the hypothesis that N is a neutral

cint; T.e., Hy = 0. The cderivatives are already con-

tinucu. overywhere, with the possible excepticn ¢ N.

g



totel megnetic field at ?

- sin Gy 3G /38

by - (25)

v
»
(4B

0 (26)

)

This implies that the z-component of the

vanishes, and that the angle

e conditicon, oG/dz = O, rTcoduces to
\ ol PSP AT = :
/. br [r. cos 0P, (cos § =~ sin & dP] {cos &/ab] = 1.5 sin 286.

v

for 3 = 6, p = 13 wnich is equivalent to H

(27)

= 0 at N.

LAZ
The congruence of F and G requires oF/dz = 0 at N; this

gives —i3e to the auxilicry condition

[}

-

da m

n

\ I | e 2 .
i cos - si — P '{cocs B) = 2 cos"B - sian"®
> a__ 35 - sine—> 2. )

do

for 6= 8,,. We can show that this
N

to E = 0 at N.

Since the wwgneﬁc-ﬁckf must

n.o y-component on the NXC. if 5

If F = 7 cos 6 3W/06, then

7
= 1 . .0
= = *-*—-?J - S1IN o CCs v+
oz o6 ~ -

(28)

condition is equivalent

, Dy symmetry, have

= 0, then [Hxand,br 3ifox1=0.
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\

but

}1 ~ <2 ?T7 3 BZVT\ ~ y LT cOs 9 E‘W (30)

= gin 8§ - = 4+ 208 © = - =
PR - - L2/ 3530 e
[y (]
- -~ T4 PR . PR G < T LN -
S.0L apphiicacion of Zgs. (io,; and the con nce condition,

(3%

I (31)

‘ L‘.'\r
S IS
then =, = 0; N 1is neuira:
ha P PO o MUl oadi

m (8 /H )(37/3z) = -cos § \ Lin ): 0 (32)
N N ~Oy

Therefore, we must add one more auxiliary condition to

insurc chat the F-contour is horizontal at N:

3 2 1
z—% = CcCs™ o 2 5 - 2 sin § cos 8 “— + sin 6L =0 (33)

o/
N
o/
©
[eX)
0
o/
<
o/
5]

N
Finally, for the sake of convenience, we shall salso

require that F and G intersect at 6 ; by

i
S
o

i

S

- £00s-t R Ve -~ 3 1
symmeIry the gradients of the surfaces arc radial at
T S = : 3w e e R s . 33 =
his soint.  This regulrement will 2o us two additional




b
S -

u
10X - n+2 3
1?’2‘>‘anln(n+1-) pO =0, <34>
n=1
Ssirce
é+ Fala+ 1), m=1
a P {cos§ !
1im ‘de =ﬂ <35)
6 — O k o by m 5"1 1)

which ca~ te derived from tne wall-known formula (Jahrke,

t al., =220, p. 114)

— a—

m?ﬂ(cos §)/{d cos )" |

N . . U Sy ~
and the series expansion for P, (cOs 6).

The requirement that G_(pO,O) = 0 is identically
satisfied; we can also show that 3F/¢d = 0 identlcaily

~ N

or 6 = 0. Since this point satisfies F = pOBW/ou = 0,

th

cthen

Q/
‘]
o/
—
g

.!
L

(36)

o/
[<p]
o/
[en]

Turthermore, the congruence conditlon,

L2,
~ g = - tan © MW _gat =0 R (37)
o34 90
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R 3 /7 5'] N N R
é—% = - Q—Krz ——‘)= Jaz 5 =0, (38)
o6 oxr ar

since W depends on terms wi ot [ooloTs 27(1) which vanish

;
)
\
N
i
1%
r.J
5
)
)
i
b
b))
y
:
.
:

. Thos, Cho osvoooLu o . ~sface at the
apex of the magnetosphere is "buiit into" our representa-
tion by virtue of the congruence concitlon.

Finally, we have the symmetry condition on G :

7 - 1 4 N '\_"‘2 > o
3CT/38 ~ 1+ 5 ) o -nln + 1) % —bga= 0, (39)
v e —- O b JYPS U
n=1
lim .,)m/ W AN fan .
since 5 "y dP \cos 8)/é6 = n{n = 1)/2 for m = 1, and

zero otherwise.

We now wish to make T and G coincide as closely as
possible on cthe assumpticn that the resulting curves
will, at “cest over some sizable region, be a good
approximation to the (assumed) unique solution which

™

lies in both families, F and G, as defined in Zcs. {(13)
and (18). 1In Egs. (21) there are 2+ p(p+1l)/2 unknowns,

oo

¢ - l—-—- —_ 14 A A - - ~
b, ¥ . & (87 =0, b =-(n+lla_); the congruence
condition, Eq. (20), yields (¢-1) independent eguations
(it iz <. entically satisiiec for n = 1); there are
c2ven auxiliary equations, (23), {24y, (27), (285, (33),

(39), in which two more unknowns, p_ &nd Oy,
L

. ~ - -~ /7 N\ e e

cre “-croduced. Thus we ~ave a system OL (M+0) equallions

ia & _.+1)/2 unknowns, -ich we can scive by Tequiring



the F- and G-contours to intersect at u{x-1)/2 - 2

selected values of 6 (we have zlready required inter-

. - — - ] ~ — ~ N B S i -

section at § = 0, and ¢ = J..). ~.U00uWZA there 1s no
3 2 [ T - 2 ~e e - £

sure and cerizin way & 3 setaems of

4, [V, R oy ey A e = 2T A D L

cranscendental eduatidns, i CLo oo Lins Ween & U0

approximation to the solution there are mathods (e.g.,

N

Newton-Raphson) which converge to the right answers.
To construct such a good approximation one begins with
small woives of u for which the cguations are sc.. ..o,

and gradually builds up solutions for larger anc .arger

W. This method is illustrated in detail in [Blum, 1383bl.
1

system appears oyer—sseci;ied. However, as we shall
see in the next section, the congruence condition an

Eq. (27) ere identically satisfied, while Eq. (39) is
not independent of the remaining auxiliary equations.

Therefore, the system is solub. . Zor p = 1.

FIRST CRDER CALCULATIONS -- NCOCON MERIDIAN CONTOUR
a2t us consider the first-order expansion for the
induced -otentials, and apply the method of the pre-

cedinz scccion. Then

H

sing cos?; W' = A.. ¥ sinb cos? . (40)
i

7 N em e s e
Lhe eonzruenc

()

condition, ~g. {Z0), is identically

{
{
€
p-t
4
»

satl

(Fz

the normali-zd - vstem the equations

s



of the confinement and pressure contours are

A

6 = sin g (1/2% - 2a, 0% b3) - &% = 0,87=0. (41)

Although we might expect such a meager representation to be
greatly overspecified by all the conditions derived in the
ection, this does n

, prove to be the case. These

w
@]
&3

preceding

conditcions are satisfied by the cnoice of
b =3 > eN = ﬂ/za’::f = 6: aiy = -l,R=<3M/B)l/3 . (42)

Note that G and F ave circles of radius unity; thus the
apex radius, v,=R, 1implies that the original GMF is approxi-
mately trinled at this point, rather than doubled, which is

4

comprion usually made in Cre

w

the a this problem. Note

-
PR

9]
[

(g
o
also that tne cos 6 factor in F , Zc. (41), yields the field
line, © = n/2 , as part of cthe F-curve.
' - + 1 ,
The G curve can bz represenced by

1 + SDZn - 6@2 =0 ;& =2/R;n=x/R

. (43)
so that¢ the height of the magnetosphere approaches an asymp-
cote, * = 6R/5 as z goes o - ® . However, the divergence

+ - .
between F and G does not allow us to rely on G as & valid

appbroximation. Therefore, we must employ a different point

of view in order to emicnd our approx’ o downstream Of
th. neoucoal point. Wo o sooll change Jo2 Sova of the induced

- PN - A - ~ N - . - T -,
R e - Gyadn (DS G SRR G S A - -

- P e ~ - - - e~ S e T R
s Mol IATmnTE LAl - B AR GOV AN PCOCT LT LS COr~



=
-

sistent with the confinement concitilon, HS = H.

We begin by defining th

@ pressure ratlo
2 12
2 = - = e 5
Ve T Ty 2 _Z (44)
LT oc0o37X 3
O
on the G-surface. I1f the surface is precisely correct, then

[N

houl

ot
)
n
w
[
]
®
a
o
jt
}Ja
(@]
)

o) be identically unity everywhere.
If v2 is close to unity over a significant region (e.g.,

comparable to R), then we have reason to believe that it

- - o
N T~ - e
Sulilace. PErSIUPaR A

e e, T TR VU SRS S
AT ARG AR o8 Vil EDoUoRLE LV vY

!

coua

™M

[y

{

fore, we extend the contour dovmstream by assuming that

- .=,  The original potential, Oy , is unaltered, TO give
reowm and downstream e “zssions
for the magnetic ficlds at the boundary == 0. The values
of the parameters, B,B3’,x,k’, may be determined from the con-
ditions that the total magnetic field is zero ac¢ N, and the
pressur: ratio is unity. Since the total field consists of
the uv..zrturbed dipole plus the induced field, the first
condiv_on implies

30/ /3z = - 30 [z = 0; 30 /ox = - 30 /3% = W/R  {46)

@;9=Tf/2.
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In order to satisfy the first equation of (46) we

arbitrarily select kR, k’R to be the first two zeros of Jl:

kR = 3.8317 ; k'R = 7.0156 . (&7)
in order to determine i,5’ we add the relation
(a‘Q/AXaz)N =0 , (48)

which is derived by applying L'Hospital's Rule to the in-
determinate ratio (aQ/ax)N/(ao/az)N and insures that the
pressure ratio is unity at the neutral point (where dz/dx=0).
The resulting equations are solved by
2k’8R -2kBR

B = ; B! = (49)
3k(k’-k)J (k) 3k’ (k/-k)JI (k")

The consequent F and G surfaces are depicted in Fig. 3 along
with values of the pressure ratio at selected points. It can
be seen that it is very close to unity until z/R $ - 2.5
when it becomes larger than 1.10. This is due to our retention
of the original dipole potential in the downstream repre-
sentation of G; in fact, the pressure ratio should approach-
infinity as z—- ® . However, the magnetic field at z/R = -3.0
is only 1% of the fiefd at the apex of the magnetosphere,
which is the region of greatesﬁ interest.

If we assume elastic reflection from the magnetopausé,
then the customary assumption of doubling the original field

at tae azpex ylelds a value of r_= 9.65 R, (Mariner II data,
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Neugebauer and Snyder, 1962). This is somewhat smaller
than most experimental estimates; explanations have been
suggested by means of a postulated ring current. However,

the tripling of the field yields

ro = 11.2 Re

> (50)
which is in better agreement with the results of the Ex-
piorer XII probe, (Cahill and Amazeen, 1963). This probe
measured the radius of the magnetosphere to be 10.5 - 11.5 R,
at about 10° from the apex on magnetically quiet days.
Furthermore, our predicted field of 67y is in agreement with
the measured field of 70y. This is the region where we would
expect to find the best agreement, assuming our mathematical
model of the interaction to be correct.

. o . . .
On the downstream extension at 8=140" this approximation

predicts
r = 22.4 Ry , (51)

in good agreement with the measurements of Explorer X, which
found the interface to be at about 22.2 R,. This apparent
agreement must be treated with caution. For one thing, the
predicted magnetic field is only 4.5y, instead of the measured
vilue of 30y; furthermore the idealized model does not account
for thermal pressure, which is around 1/100 of the kinetic .

- ~essure and would tend to make the dimensions of the actual
magnetosphere everywhere smaller than those of the idealized
model. This effect would be most pronounced on the down-

stream side where the field is weak.
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Furthermore, there is the question of how well this
first-order calculation approximates the solution to the
idealized free-boundary problem. The boundary conditions
are feasonably consistént over a. large region from z=R
to z=-3R which leads us to believe‘that this constitutes
a creditable‘apprOximation, particularly in respect of the
shape of th;i;ignetosphere, excluding the region around
the neutral point. Concerning the size of the magnetosphere,

Professor Leverett Davis has noted that if we evaluate the

4
line integral (Ampere's Law)

§H.ds =0 o (52)

over the correct contour C in the xz-plane shown in Fig.4

we find, using Eq. (12),

X

. - N
$c Beds = - 5 Taax + [ xg

dx = 0 (52)

therefore,
Xo T 2%y - (53)

It is clear that Fig. 3 is not in good agreement with
Eq. (23), since x_ = QxN/B. Generaily the position of the |
"asymptote is rather sensitive to the position of the neutral
point. Since our neutrai point is on the x-axis, rather than
upstream of it, we would expect'a large error to show up ih
the asymptote. It is believed that the exact soiution t¢

the idealized free boundary problem will show 2R/3 < x, < R.

N
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I1f one arbitrarily took Xy = 5R/6, this would imply eN
in the range of 56° to 90°. This is in accord with the
most recent calculations of Dr. Gilbert Mead of Goddard
Space Flight Center (pfivate communication) who finds
X, = 1.70R, 6 = 71° and the apex radius z_, = 0.934R
by means of the fourth iteration of Beard's approximation
(Beard, 1960, Beard and Jenkins, 1962).
If Newton's (pressure) condition is used, then our
predicted lengths must be multiplied by (2)1/6-
Coordinates of selected points on the downstream
extension are given in Table I.”- Computations were per-
formed by using Newton's method to calculate x for each .
given z; final increments 6x were always less than 0.0001

in the normalized system.

TABLE 1

COORDINATES OF DOWNSTREAM EXTENSION, GMF-SCR INTERACTION

‘ z X z X  +(3u/8)t/3

0.000 1.000 -1.000 - 1.224

-0.100 1.005 -1.200 1.250
-0.200 ©1.021 -1.400 1.269

-0.300 1.046 -1.600 1.283

4. 400 1.077 -1.800 ©1.293

-5.500 1.108 © -2.000 © 1.301

-0.600 1.138 -2.500 1.314

-0.800 1.188 -3.000 1.321
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THE MAGNETOSPHERE
The next step in our method is the calculation of
the magnetopause in three dimensions. This can be done,
in principle, by integrating the first-order partial
differential equation given by the pressure condition

on the boundary:

H2 = 82 cos? x = 82(a£/22)%/(26)? (54)

where f(x) = 0 is the equation of the magnetopause. In
the process of determining the contours F and G in the
noon meridian plane we have also determined an approxi-
‘mation to the induced potential, which we have reason
to believe valid near the apex and worsening as we go
downstream. Bearing in mind the limitations of the
approximation,vwe shall assume that H in Eq. (54) is the
magnetic field derived by means of the first-order cal-
culation of the preceding section.

In spherical coordinates, normalized to R, the com-

ponents of h = H/B, are:

hp = (2/3)(0-3-1) ;in 8 cos @

hy = -(l/3)(p-3+2) cos 9§ cos ?

hy = (1/3)("%2) sin ¢ (55)

h2\= h%.f h% + h% = (l/9)[(2+p-3)2 -3 sinzpcosz¢(4p-3- 9-6)].
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To the original dipole field we have added the uniform

induced fieid in the x-direction(previouslySderivedZ

1f we express the surface in Cartesian coordinates,
Eq. (54) takes on the relatively simple form of the

eikonal equation:

f(x,y,2)* = z - Z(x,y) = 0O (56)

and since Vf =>- d3Z/dx i - 3z2/dy j + k, then Eq. (54)

becomes

h? = 1/(1 + p? + q%) (57)

pP+q?=n2-120, (58)
where we define

p = 3Z/3% ; q =‘82/3y - (59)

Given an equation such as Eq. (59) which can be expressed

explicitly by the first-order partial differential equation

F(x,y,z,p,q) = 0 ,

one may construct a set of simultaneous ordinary differ-

ential equations (Courant, 1962, Chap. II)

dx/dt = 3F/3dp ; dy/dt = 3dF/3q ; ‘ (60)
dz/dt = p 3F/2p + q 3F/3q ‘;
dp/dt = - (JF/dx + p dF/dz) ;
dq/dt = - (3F/3y + q 3F/3z) .

*REapmiaates pevaalized to R.
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These equations yield a family of curves {x(t),y(t),z(t)},
known as "characteristics! which lie in the desired
integral surface, f(x,y,z) = O, determined by the equation
F(x,y,z,p,q) = 0, plus appropriate boundary conditionms.
Thus, by constructing tnis family of curves we have also
constructed the surface, f.

There is a well-known theorem (Courant, 1962, pp. 75~
84) which stafes that given some initial curve on the
integral surface which is pot a charactefistic, one can
construct the required surface as a unique set of the
characteristic strips which pass through the initial
curve. In our case we know the initial curve to be the
upstream part of the NMC, and also that q = 0 and y = 0.
Howevér, simple'substitution shows that this curve is a
characteristic, and of itself does not determine a wunique
integral surface of Eq. (58). However, we may adduce
another condition from symmetry: p = 0 on the (equatorial)
contour which lies in the intersection of the magnetosphere
and the plane & = m/2, since the magnetosphere gradient
should have no x-component there. If we substitute the
conditions x = 0, p = O into ‘the family of characteristic
equations, we find that this curve also is a characteristic

and satisfies the equation
dz/dy = -(h~%2 - 1H)V/Z | - (61)

Solutions of this equation exist; however, at the inicia.
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point (x,y,z) = (0,0,1) the radical vanishes, so we may

not immediately assume the solution unique at that point.
Since all characteristic contours describing the

desired surface must lie between the NMC and the equatorial

contour, they must all pass through the apex. This type

of problem is described by Courant (1962, p. 83) as "A

particular limiting case of the initial value problenm,

the case wherethe initial curve degenerates into a point

..... All characteristic curves through a fixed point P

of x,y,u - [our z] space form an integral surface." Such

a surface is known as an integral conoid. It is unique,
élthough it may be a surface of several sheets. The
idealized magnetosphere must be such a surface regardless
of tﬁe representation of h.

To avoid difficulty in applying boundary conditions
to the characteristics passing through the apex we shall
employ an approximation. We expréss Eq. (56) in spherical

coordinates

£(p,0,8) = p - P(8,%) = O.;j (62)

2

hz = [3(p sin 6)/36]2/[92 + (ap/ae)z + csc”o (Bp/aé)zj .

The symmetry requirement, p = O for x = 0 and q = O

for yy= 0, may be expressed by

csc 8 (dp/d%) = 0 for & = .0, n/2 . (63)



-26-

Therefore, we may try to integrate the surface by com-
puting the curves p = p(e,@O) for a set of fixed 60,
starting at the apex, 6 = 0, and ignoring the term
3p/3% in Eq. (62). When we have generated an integral
surface in this way, we can then evaluate 3p/3% num-
erically between contours in order to see how much

of the surface so calculated is consistent with the

approximation. We shall arbitrarily set
csc?8 (3p/38)2 < 0.04 (p2 + (3p/20)2)  (64)

as the limit of the approximation, so that the right

side of the differential equétion
h = [2(p sin 6)/30]/ 0% + (3p/38)2 (65)

never differs by more than 2% from the right side of Eq. (62).
If we fix §>= @0 then we have 3p/36 - dp/d6 along
the contour which is the intersection of the magneto-
sphere and the plane of constant 2. By integrating
Eq. (65) numerically in this way, contour-by-oontoﬁr,
it is possible to generate approximétely two-thirds of
the upstream part of the magnetosphere before the
criterion (64) is violated. This region is bounded by
the heavy dashed line in Figs. 5 and 6. From this
boundary to the plane z = 0 we derive the surface from
the characteristic equations starting from the dashed

boundary as our initial, noncharacteristic curve.
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Table 2 (cont.)

W OUVI3 &\

E. § = 0.5 radians G. @ =0.7 radians

o p w(®) 0 p W)
0.1 1.000 0.08 0.1 1.000 0.15
0.2 1.001 0.17 0.2 1.003 0.34
0.3 1.003 0.27 0.3 1.007 0.52
0.k 1.006 0.51 0.k 1.012 0.97 ~
0.5 1.010 . 0.9k ° 0.5 1.019 1.62
0.6 1.016 1.63 0.6 1.029 2.61
0.7 1.022 2.71 0.7 1.04) b,11
0.8. 1.030 4,22 0.8 1.055 6.19
0.9 1.0k0 6.45 0.9 1.07h 9.01
1.0 1.053» 9.62 - 1.0 1.096 12.68.
1.1 1.069 1k.0k4 1.1 1.124 17.30
1.2 1.089 20.02 1.2 1.159 22.82
1.3 - 1.116 27. 77 1.3 1.204 ' 29.00
1.4 1.151 37.16 1.4 1.262 35.17
1.5 1.199 . 47.13 1.5 1.337 Lo.29
1.6 1.266 55.38 1.6 1.439 42,90
F. § = 0.6 radians H. @ = 0.8 radians
0.1 1.000 0.13 0.1 1.001 0.1
0.2 1.002 0.27 0.2 1.004 0.3
0.3 1.005 0.38 0.3 1.008 0.6
0.4 1.009 0.75 0.k 1.015 1.0
0.5 1.015 1.28 0.5 1.025 1.8
0.6 1.022 2.13 0.6 1.036 3.0
0.7 1.031 3.45 0.7 1.051 4.5
0.8 1.042 5.30 0.8 1.059 6.78
0.9 1.056 T7.92 0.9 1.092 9.63
1.0 1.074 11.46 1.0 / 1.119 13.24
1.1 1.095 16.14 1.1 1.154 17.52 .
1.2, 1.123 22.09 1.2 1.197 22.39
1.3 1.158 29.21 1.3 1.251 27.50
1.2 g 1.267 + 44,38 1.2 1.ko9 35.56
l‘ \' l.

1.350 , 49,25 1.527 36.72



Table 2 (cont.)
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Table 2 (cont.)
M. § = 1.3 radians

0 P w®)
0.1 1.002 0.35
0.2 1.007 0.k2
0.3 1.016 0.57
0.4 1.030 0.97
0.5 1.0L7 1.46
0.6 1.069 2.20
0.7 1.097 3.1k
0.8 1.130 4.29
0.9 1.171 5.59
1.0 1.220™ 7.02
1.1 1.280 8.49
1.2 1.352 9.85
1.3 1.441 10.94
1.k 1.551 11.57
1.5 1.689 11.66
1.6 1.866 11.15

N. $ = 1.4 radians

0.1 1.002 0.26
0.2 1.008 0.36
0.3 1.017 0.51
0.k 1.031 0.66
0.5 1.050 1.05
0.6 1.073 1.4k
0.7 1.102 2.08
0.8 1.137 2.81
0.9 ! 1.179 3.66
1.0 1.231 L.57
1.1 1.293 5.47
1.2 . 1.368 6.30
1.3 ° 1.460 6.9k
1.4 1.57&- T.27
1.5 1.717 7.28
1.6 1.899 6.93

0.

O

PEPEPPEO00000000
AN £E WD H OWERIOWN FWwhH

g = x/2 radians



TABLE 3

CHARACTERISTICS CLASSIFIED BY INITIAL CONDITIONS CHERE I LW

A. (0.988,0.099,0.171,-5.033,0.253) E. (0.747,0.%08,0.609,-1.101,-0.265)
p o(rad) ¢ v(%) o o(rad) @ v(°)

1.008 1.420 0.099 8.46 1.048 0.963 0.497 8.20
1.010 1l.4k70 0.098 13.37 1.0  1.02%  0.484 10.26 _
1.012 1.520 0.097 21.81 1.064 1.083 o0.h72 12.65
1.016 1.570 0.095 33.36 1.072 1.139 0.460 15.42
1.080 1.193 0.450 18.62
B. (0.928,0.188,0.368,-2.309,-0.054) 1.089 1.245 0.439 22.30
1.098 1.295 0.430 26.49
1.016 1.211 0.199 6.67 1.108 1.344 o0.420 31.19
1.019 1.264k “0.195 8.54 1.120 1.392 o0.4k11  36.39
1.021  1.315 0.191 11.56 1.132  1.439 o0.ko2 k2.02
1.024% 1,366 0.188 15.k1 1.146 1.484 o0.392 L47.93
1.028 1.416 0.185 20.71 1.161 1.529 0.383 53.92
1.032 1.k66 0.181 27.89 1.177 1.572 0.373 59.73
1.038 1.515 0.178 37.10
1.047 1.573 0.17% 49.79 F. (0.683,0.467,0.657,-0.930,-0.303)

c. (0.848,0.262,0.509,-1.542,-0.158) 1.059 0.914 0.59 8.23

. 1.069 0.978 0.579 10.30
L2k 1.062  0.299 6.16
.027  1.118 0.292 T7.84
031 1.173 0.285 9.93
.035 1.227  0.279 12.54 2110 1.205 0.525 21.7h
039 1.279 0.273 15.82 121 1.256 0.513 25.49

1.079 1.039 0.56hF 12.66
i

1

1

1

Ok 1.330 0.267  19.97 1.13%k  1.306 0.502 29.60
1

1

1

1

1

1

.089 1.09T 0.550 15.3h4
.099 1.152 0.537 18.36

050 1.380 o0.262 25.17 87 1.35%  0.h91 34,04
056 1.429 0.257 31.59 161 1.h00 o0.480 38.75
L063  1.hk77 0.251  39.27 176 1.446  o.L69 43,62
072 1.525 0.2u6  L48.02 .193  1.k90 0.458 48.52
1.083 1.572 0.240 57.40 211  1.532 0.7  53.28
.230 1.573 0.436 57.69

G. (0.612,0.515,0.702,-0.780,-0.332)

N el ol R R

D. (0.802,0.339,0.559,-1.302,-0.215)

1.036 1.012 0.398 T7.56

1.0k2 1.071 0.388 9.50 1.064 0.850. 0.700 7.h2
1.048  1.127 0.379 11.83 1.077 0.920 0.678 = 9.38
1.053 1.182 0.370 1k.61 1.089 0.985 0.660 11.60
1.060 1.235 0.362 17.94 1.101  1.045 0.643 1h.,10
1.066  1.286 0.354 21.90 1.11%  1.103 0.627  16.87

1.074 1.337 0.346 26.59
1.082 1.38 0.339 32.06
1.091 1.43% 0.331 38.30 .15%  1.260 - 0.586 26.75
1.102  1.481 o0.324 45.23 169 1.310 0.57Th 30.68

1.127 l.157 0.613 19.92

1

1

pt

1.11h\ 1.527 0.316 52.64 1.185 1.356 0.562 3L.70
1

1

140 1.210 0.599 23.26

1.128 \ 1.571 0.308 60.22 .202 1l.ho2 o.549 38.82
. 1.446  0.538 L42.96

1.488 o.8525  bL7.02

1.260 1.529 0.51% 50.85
1.570 0.502° 52.34

\




K. (0.535,0.550,0.745,-0.648,-0.351) J. (o.h78,o.7uu,o.701,-0.566,-o.u60)

o 6 g v(°) o ® g vw(°
1.070 0.%0 0.800 6.70 1.128 0.900 1.000 9.42
1.085 0.875 0O.77h 8.56 1.152 0.970 0.976 1l.41
1.099 0.943 0.752 10.67 1.176  1.03%  0.955 13.57
1.11%  1.007 0.733 13.03 1.200 1.654% 0.936 15.87
1.128 1.056 0.715 15.62 1.225  1.149 0.919 18.28
1.143  1.123  0.699 18.44 1.251  1.202 0.903 20.74
1.159 1.176 0.684 21..8 1.277 1.251 0.888 23.25
1.175 1.228 0.669 24,72 1.304 1.298 0.874 25.74
1.192 1.277 0.655 28.11 1.333 1.343 0.860 28.20
1.211  1.324 0.642 31.55 1.362 1.385 0.847  30.59
1.230 1.370 0.629 35.22 1.393 1.k27 0.834 32.88
1.250 1.414 0.616 38.80 1.k2k 1,464 0.822  35.04
1.271  1.456 o0.604% 42.31 1.457 1.501 0.809 37.07
1.29%  1.497  0.591 45.65 1.kb91  1.536 0.797 38.91
1.328 1.536 -0.579 48.74 1.527 1.570 0.786 L40.59

1.343 1.57T4 0.566 51.50 X
K. (0.430,0.845,0.678,-0.501,-0.51T
I. (0.512,0.645,1.096,-0.616,-0.405) ’ ’ ’ ’ )
1.182 0.991 1.087 i3.93

l.104 0.880 0.889 9.06 1.211 1.055 1.06T 12.0.
1.123 0.950 0.865 11.16 1.250 1.113 1.050 14.79
1.14%2  1.014 0.844 13.48 1.270 1.168 1.03% 16.82
1.162 1.074 0.826 15.98 1.301 1.219 1.019 18.87
1.182  i.130 0.808 18.65 1.332 1.268 1.005 20.92
1.201 1.18% 0.792 21.45 1.365 1.313 0.992 22.92
1.222  1.23%  0.777 24.35 1.%00 1.356 0.979 24.86
1.244 1,283 0.762 27.32 1.433  1.397 0.967 26.73
1.267 1.329 0.748 30.31 1.b69 1.436 0.956 28.49
1.291 1.373 0.735 33.27 1.506 1.473 0.944  30.15
1.316 1.k15  o0.722 36.17 1.54 1.508 0.934 31.69
1.343 1.456 0.709 38.94 1.58% 1.547 o0.921 33.11

1.370 1.495 0.696 Lk1.55 1.624 1.572 0.913 34.38
1.399 1.543 0.683 43.95 '
1.429 1.568 0.671 U46.11

L. (0.368,0.945,0.651,~0.421,-0.573)

fo 2] ¢ ‘V(o)
1.206 1.000 1.200 9.49
1.238 1.064 1.182 10.97
l.272  1.122  1.167 12.52
1.306 1.177 1.153 14.11
1.3%2  1.228 1.1k0 15.70
1.378 1.275 1.139 17.28
1.415 1.320 1.117 18.81

1.453  1.362 1.106 20.28
1.493 1.ho2 1.096 21.68
1.533 1l.439 1.08 22.95
1.575 1l.475 1.077 2hk.2k
1.617 1.508 1.068 25.39
1.661 1.540 1.059 26.45
1.706 1.5T0 1.051 27.43
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Tables 2 and 3 give coordinates of selected points om
constant-% and characteristic contours, respectively.

Let us define an angle § such that
Ih
tan § = — (66)

h is known, and the gradient of f is calculated numeri-
cally from (p,0,3p/36,3p/3%) or (p,q) at the point in
question, depending upon which representation is more
convenient. The value of ¥ is also listed in Tables 2

and 3. The light dashed line in Figs. 5 and 6 is the
boundary of the region of the magnetopause over which

y = 10°. The line composed of alternating dots and dashes
marks the boundary for § < 25°.

As expected, we find that agreement with the con-
finement condition (¥ = 0) worsens as we move away from
the magnetosphere apex. However, the values of § are
sufficiently small over a significantly 1érge region of
the magnetosphere, that we assume our approximation to
be valid. Even in the case that | = 250, the total field
exceeds the tangential field by only lO%. The induced
field used here is probably larger than the actual field;:
it is expected that the surface derived here is an upper

limit to the

actual solution of the idealized problem.
In this approximation, the magnetosphere may be

represented by the empirical formula
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a(s)-601 - 6(2)-8%]

p(6,%) = (67)
sin [a(@)-6]
a(®) = (8/5) sin (7%/5) ,
5(3) = (&/4) sin (158/8) ,

(0£04T/2 | 0¢ FeT/a)
to within 4%.
A convenient representation for the intersection

of the magnetosphere and the xy-plane is given by

y% = 0.2263 p2/3 (o3 - 1) , (68)

where p2 = x2 4+ yz. Comparison with the z = 0.00 contour

of Fig. 2 shows that Eq. (68) is accurate to within 0.2%.
These calculations may be performed for higher-order
congruence approximations without any fundamental change in
the method illustrated here. Additional refinement would
allow us to begin the extension further downstream; by
adding terms to the extension formula, Eq. (45), we should
be able to match the upstream and downstream fields more
closely. This would give an improved approximation to
the fields inside thé magnetosphere, and allow us to
extend the three-dimensional surface further downstream.
Ultimately, one could use the surface so obtained as the |
first trial in a three-dimensional relaxation calculation
(Cartesian coordinates). If the accuracy of the co-location

and extension is sufficient, this last step could be omitted.
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